Eden Academy System Architecture
Overview
Eden Academy is a multi-agent creative platform built on a Registry-first architecture. The system supports autonomous AI agents (Abraham, Solienne, Amanda, Miyomi, etc.) with individual creative practices, while maintaining data consistency and service boundaries through Eden Genesis Registry as the single source of truth.
Registry-First Architecture (Current)
The system has evolved to a Registry-first pattern where all agent data, works, and creative outputs originate from Eden Genesis Registry:
``
Eden Genesis Registry (Source of Truth)
↓
Academy API Layer (Transformation)
↓
Agent Sites & UI (Presentation)
`
System Diagrams
Current System (v1.0 - Production Ready)
`
mermaid
graph TD
%% Input Sources
A[app.eden.art] --> B[/api/webhook/generation]
%% Inbox & Processing
B --> C[(Database: state='inbox')]
C --> D{Tagger Enabled?}
%% Async Enrichment
D --> E[Vision Tagger Queue]
E --> F[Claude Vision API]
F --> G[Add Tags/Quality/Routing]
G --> C
%% Human Review
C --> H[Review Board - Kanban UI]
H --> I[Human Review]
I --> J{State Change}
%% State Transitions
J --> K[(state='review')]
J --> L[(state='published')]
J --> M[(state='archived')]
%% Distribution
L --> N[/api/agents/:id/public]
N --> O[solienne.ai]
N --> P[Public Feed]
%% Controls
Q[Daily Budget Cap] -.-> F
R[Sample Rate] -.-> E
S[Auth Guard] -.-> H
style A fill:#e1f5e1
style O fill:#ffe1e1
style P fill:#ffe1e1
style H fill:#e1e1ff
style F fill:#fff4e1
`
Key Components
#### 1. Ingest Layer
• Webhook: /api/webhook/generation
receives from app.eden.art
• Direct Upload: Nina curator in Studio tab
• State: Everything starts in inbox
#### 2. Enrichment Layer (Async, Non-blocking)
• Vision Tagger: Runs in background with budget caps
• Taxonomy: type, subject, format, mood, series
• Quality: artifact_risk, print_readiness, nsfw_risk
• Routing: send_to_curator, share_candidates
#### 3. Review Layer
• Kanban Board: 3 columns (Inbox → Review → Published)
• Keyboard Shortcuts: J/K navigate, R review, P publish
• Batch Operations: Multi-select and bulk actions
#### 4. Distribution Layer
• Public API: /api/agents/:id/public
with caching
• Feed Consumers: solienne.ai, public websites
• Cache Strategy: 60s TTL with ETag validation
Enhanced System (v2.0 - Next Builds)
`
mermaid
graph TD
%% Input Sources (expanded)
A[app.eden.art] --> B[Ingest API]
AA[Direct Upload] --> B
AB[Farcaster Bot] --> B
AC[Schedule Job] --> B
%% Processing Pipeline
B --> C[(Database)]
C --> D[Enrichment Queue]
%% AI Services (parallel)
D --> E[Vision Tagger]
D --> F[Curator Agent]
D --> G[Caption Writer]
E & F & G --> H[Enriched Content]
%% Review & Curation
H --> I[Review Board]
I --> J[Human Curator]
J --> K{Decision}
%% Routing Logic
K --> L[Channel Router]
K --> M[Curator Queue]
K --> N[(Archive)]
%% Distribution Channels
L --> O[Main Feed]
L --> P[Farcaster Feed]
L --> Q[Instagram Feed]
L --> R[Curator Preview]
L --> S[NFT Marketplace]
%% Share Builder
O & P & Q --> T[Share Builder]
T --> U[Format: Square]
T --> V[Format: Story]
T --> W[Format: OG Image]
T --> X[Caption + Tags]
%% Analytics & Feedback
K --> Y[Analytics Engine]
Y --> Z[Taste Learning]
Z -.-> E & F
%% Smart Filters
H --> AA[Smart Lists]
AA --> AB[Manifestos]
AA --> AC[Print Ready]
AA --> AD[Björk-coded]
%% Budget & Controls
AE[Budget Manager] -.-> E & F & G
AF[Quality Gates] -.-> K
AG[Rate Limits] -.-> B
style A fill:#e1f5e1
style AA fill:#e1f5e1
style AB fill:#e1f5e1
style AC fill:#e1f5e1
style O fill:#ffe1e1
style P fill:#ffe1e1
style Q fill:#ffe1e1
style R fill:#ffe1e1
style S fill:#ffe1e1
style I fill:#e1e1ff
style Y fill:#f4e1ff
`
New Components in v2.0
#### 1. Multi-Source Ingest
• Farcaster bot integration
• Scheduled generation jobs
• Multi-agent support
#### 2. Channel Router
`
javascript
channels: {
main: { cache: 60, filter: 'all' },
farcaster: { cache: 300, filter: 'social-ready' },
instagram: { cache: 3600, filter: 'square-format' },
curator: { cache: 0, filter: 'high-quality' }
}
`
#### 3. Share Builder
• Auto-formats for social platforms
• Generates captions with hashtags
• Creates QR codes for IRL exhibitions
• Exports as downloadable packs
#### 4. Smart Lists (Saved Filters)
`
sql
-- Manifestos this week
WHERE type='manifesto' AND created_at > NOW() - INTERVAL '7 days'
-- Ready for wall
WHERE quality->>'print_readiness' >= 0.8
AND quality->>'artifact_risk' = 'low'
-- Björk-coded
WHERE tags->'subject' @> '["biotech-adornment"]'
AND tags->'mood' @> '["mythic"]'
`
#### 5. Analytics Dashboard
• Inbox → Published conversion rate
• Average review time
• Tag distribution
• Budget spend per agent
• Curator send rate
#### 6. Taste Learning
• Track human decisions vs AI predictions
• Feed back to improve Vision Tagger
• Per-agent style profiles
• Quality threshold learning
Database Schema Evolution
Current (v1.0)
`
sql
creations:
- id, agent_id, url, source
- state (inboxpublished)
- tags, quality, routing
- created_at, updated_at
`
Enhanced (v2.0)
`
sql
creations:
- [v1 fields]
- channels jsonb -- distribution settings
- analytics jsonb -- engagement metrics
- exports jsonb -- generated formats
channels:
- id, name, agent_id
- settings jsonb -- cache, filters, format
- active boolean
smart_lists:
- id, name, agent_id
- filter_query text
- color, icon
analytics_events:
- creation_id, event_type
- channel, metadata
- timestamp
``
Implementation Phases
Phase 1: Current System ✅
• Webhook ingest
• Review board
• Vision tagger
• Public API
Phase 2: Distribution (Next Sprint)
• Channel router
• Share builder
• Smart lists
• Basic analytics
Phase 3: Intelligence (Following Sprint)
• Curator agent integration
• Caption generation
• Taste learning
• Advanced analytics
Phase 4: Scale (Future)
• Multi-agent dashboard
• Exhibition mode
• NFT marketplace integration
• API for external tools
Key Metrics to Track
Pipeline Health
- Inbox backlog size
- Review → Publish rate
- Average processing time
AI Efficiency
- Tagger accuracy (human agrees with tags)
- Budget utilization
- Sample rate optimization
Distribution Impact
- Views per channel
- Engagement rates
- Curator picks
Agent Performance
- Creations per day
- Quality scores
- Style consistency
System Benefits
For Trainers
• Complete control over publishing
• AI assists but doesn't decide
• Budget transparency
• Keyboard-driven efficiency
For Agents
• Consistent publishing pipeline
• Quality control
• Multi-channel distribution
• Performance visibility
For Eden
• Scalable to N agents
• Cost-controlled AI usage
• Data-driven improvements
• Professional publishing system
Next Actions
Immediate (This Week)
- Deploy webhook endpoint
- Test with app.eden.art
- Train on Review Board
Next Sprint
- Build Share Builder
- Add Smart Lists
- Create Analytics view
Following Sprint
- Integrate Curator agent
- Implement taste learning
- Multi-channel routing